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a b s t r a c t

CDK2 (cyclin-dependent kinase 2) is an attractive target for therapeutic intervention in cancer. In this
work, quantitative structure–activity relationship (QSAR), molecular docking, and molecular dynamics
(MD) studies were performed on three sets of 155 CDK2 inhibitors. The obtained models exhibit good
predictive capability in both internal and external validations (q2 = 0.73, r2

pred = 0.94 for 6, 6-dimethyl

eywords:
DK2

nhibitors
oMFA
oMSIA
olecular docking
olecular dynamics

pyrrolo [3,4-c]pyrazoles analogs, q2 = 0.62, r2
pred = 0.63 for imidazole pyrimidine amides analogs and

q2 = 0.56, r2
pred = 0.58 for 4-(pyrazol-4-yl)-pyrimidines analogs). Furthermore, a comparison between

3D-contour map, docking and MD simulation explore in detail the binding modes and the key structural
features impacting the interaction of each series of inhibitors with the CDK2 enzyme, which should be
useful to aid the designing of new inhibitors with CDK2 improved biological response.
. Introduction

Uncontrolled cell proliferation is a hallmark of tumorigenesis,
hich may result from an increased expression of cell cycle up-

egulators or from a reduced expression of down-regulators [1,2].
ell proliferation is regulated by the cell cycle which is commonly
iewed as an orderly progression through four distinct phases: G1,
, G2, and M. Transition between these four phases are mainly
ontrolled by cyclin-dependent kinases (CDKs), a family of ser-
ne threonine protein kinases [3]. CDKs are inactive as monomers
nd their activation requires binding to the corresponding regula-
ory proteins (cyclins) and the phosphorylation by CDK-activating
inase (CAK) on a specific threonine residue. For example, cyclins

and B activate CDK1, cyclins A and E regulate the activity of
DK2, and the D-type cyclins are associated with CDK4. To date,
3 distinct CDKs and 25 different cyclin-box containing proteins
ave been identified by human genome sequencing [4]. Different
DK/cyclin combinations serve to regulate distinct check points in
he cell division cycle.
CDK2 is one of the cyclin-dependent Ser/Thr kinases which reg-
late the cell cycle progression at multiple levels. In complex with
yclin E, CDK2 plays a paramount role during the G1/S transition

∗ Corresponding author at: Bioinformatics Center, Northwest A&F University, Yan-
ling, Shaanxi 712100, China. Tel.: +86 029 87092262; fax: +86 029 87092262.
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of the cell cycle, while in complex with cyclin A, it facilitates the
progression of the S phase of the cell cycle [5]. It consists of an
amino-terminal lobe rich in �-sheets and a larger, mostly �-helical,
carboxy-terminal lobe. The ATP-binding site is located in a deep
cleft between the two lobes that contains the catalytic residues
conserved among eukaryotic protein kinases. Monomeric CDK2 is
thought to be inactive because a region in the C-terminal lobe,
named the T-loop (residues 146–166, contains the T160 phospho-
rylation site), blocks the entry of substrates to the catalytic cleft.
When cyclin A binds to CDK2, the T-loop is displaced, allowing
substrates access to the catalytic cleft. This rotation also exposes
the T160 hydroxyl group to be phosphorylated by the CAK, allow-
ing full activation of the CDK–cyclin complex. It has been revealed
by genetic studies in mice that normal cells are not dependent on
interphase CDKs for their growth, however, certain tumor cells, due
to their pathogenic spectrum of mutation, may be sensitive to the
inhibition of CDKs [6]. Additionally, evidence from in vitro stud-
ies suggests that the inhibition of CDK2 selectively kills tumor cells
with deregulated E2F-1 activity [7]. The CDK2 activity is associated
with apoptotic progression and also with the onset of apopto-
sis in the SK-HEP1 human hepatoma cell line [8] and HeLa cells
[9]. Therefore, CDKs especially CDK2 have been regarded as novel
therapeutic targets for cancer chemotherapy [10] and may offer

new opportunities for selective and tolerable therapy for human
cancer.

CDK inhibitors are novel anti-cancer therapeutics that would
inhibit CDKs by targeting the catalytic CDK subunit or by inter-

dx.doi.org/10.1016/j.jmgm.2011.06.006
http://www.sciencedirect.com/science/journal/10933263
http://www.elsevier.com/locate/JMGM
mailto:yh_wang@nwsualf.edu.cn
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ering the regulatory pathways that govern CDK activity [11].
ecently, several CDK inhibitors have entered clinical evaluation

or treatment of cancer [12]. The first generation CDK inhibitors
nclude flavopiridol, 7-hydroxystaurosporine (UCN-01), roscovi-
ine (CYC202), BMS-387032 (SNS-032) [13], PD0332991 [14], and
547 [15]. Flavopiridol is the first CDK inhibitor entering clinical
rials in oncology with more than 50 clinical trials undertaken or
urrently in progress. This flavonoid inhibitor has been reported
o inhibit CDK1, CDK2, CDK4 and CDK6 selectively over other
rotein kinases involved in signal transduction and cell cycle regu-

ation [16]. UCN-01 is a staurosporine analogue which is associated
ith the G1/S cell cycle arrest, dephosphorylation of CDK2 [17].
YC202 is a trisubstituted purine analogue selective for CDK2/cyclin
and possesses sub-micromolar activity on CDK7/cyclin H and

DK9/cyclin T, which has undergone Phase II trial [18]. Unlike
avopiridol which is a pan-CDK inhibitor, the second generation
f CDK inhibitors primarily inhibits the G1/S transition by attack-
ng CDK2 kinase. For example, R-roscovitine, a small aminopurine

olecule with an IC50 of 100 nM, is orally bioavailable and has a sin-
le agent in vitro and in vivo activity against a broad range of tumor
ell types [19]. BMS-387032 is an N-acyl-2-aminothiazole analogue
hich could inhibit the cell cycle and transcription [20]. In addition,
straZeneca is a member of a novel class of CDK inhibitors with
pecificity for CDK2 inhibition called imidazopyridines, showing
nhancement of both gemcitabine- and cisplatin-induced apopto-
is [21]. Another CDK2 inhibitor E7070 is a synthetic chloro-indolyl
ulfonamide derivative that has multiple cell cycle effects includ-
ng the inhibition of CDK2. Meanwhile, studies have revealed that
7070 is tolerable in each schedule with the dose-limiting toxici-
ies of neutropenia, thrombocytopenia, and anemia [22]. However,
p to date, few CDK2 inhibitors have entered clinical trials and
isplayed encouraging results.

The deficiency of these compounds led to significant efforts
o identify novel inhibitors of CDK2 which have more potent
nhibitory activity and can ideally fit for combination thera-
ies for cancer. However, in vitro assessment of the activity of
DK2 inhibitors remains a labor-intensive and time-consuming
peration. In silico molecular modeling approaches, as effective
omputational method, have been widely used to find out vari-
us interactive fields making impacts on activity, to predict the
ctivities of the inhibitors and thus to help forecasting and design-
ng of novel inhibitors [23–25]. In order to improve the medicinal
roperties and to eliminate the untoward effects, some com-
ounds with good inhibitory activity have been synthesized [1,26].
ecently, several QSAR models have been built for these CDK2

nhibitors, such as 3D-pharmacophore model [27], topochemical
odels [28], CoMFA and CoMSIA models [29], crystal structure
odel [30], docking [31] and SVM prediction [32]. For example,

sing a relatively small data set of 58 aminopyrazole deriva-
ives, Mascarenhas and Ghoshal built a 3D-QSAR model using
eature-shape pharmacophore of biologically active conformation
33]. In two other reports, the ligand–protein interaction energy
etween CDK2 and 9H-purine derivatives was determined by using
oMFA and QM/MM hybrid methods [34,35]. Quite recently, com-
ined 3D-QSAR with docking study on 4,5-dihydro-1H-pyrazolo
4,3-h] quinazoline derived CDK2 inhibitors have identified the
ey structural requirements for the biological activity of the
olecules [36].
More recently, three different series of CDK2 inhibitors [37–43],

ith specific activities have been reported; however, they have
ot received much attention from a theoretical perspective so far.
hus, in this work, we applied ligand- and receptor-based QSAR

echnique to the three different classes of CDK2 inhibitors. In addi-
ion, molecular docking and MD simulation were also performed
o deeply explore the interaction mode between the inhibitor and
he receptor. To our knowledge, this work provides the first QSAR
ics and Modelling 30 (2011) 67–81

study for these CDK2 inhibitors. The developed models can not only
help in understanding the structure–activity relationship of these
compounds but also serve as a useful guide for the design of novel
CDK2 inhibitors with better biological activities.

2. Methods and materials

2.1. Data sets and biological activity

The inhibitory activities of three different series of com-
pounds towards CDK2 enzyme reported in the literatures [37–43]
were used as the dataset for molecular modeling in this study
(Tables S1–S3). Discarding compounds with unspecified inhibitory
activity, the data set comprising diverse DPP, IPA and PYP analogs
possessed a wide spectrum of inhibitory activities against CDK2
enzyme. The inhibitory activities (IC50) of DPP analogs have been
previously investigated by in vitro kinase assay [37,38]. For IPA
analogs, the Spatial Proximity Assay was used to illustrate the abil-
ity (IC50) of these inhibitors to modulate the phosphorylation of
Retinoblastoma protein [39–42]. And for PYP group, the kinase
phosphatase activity was monitored by using IMAP-FP assays and
expressed by IC50 values [43]. The IC50 values were converted into
the corresponding pIC50 (−log IC50) values, which were further
used as dependent variables in the QSAR analyses. Each group of the
molecules was separated into two sets. The test set (Tables S1–S3
marked with a) was chosen by considering that the test compounds
represent the structural diversity and a range of biological activities
similar to that of the training set, which were used to determine the
external predictivity of the derived models.

All molecular modeling and QSAR studies were performed
using Sybyl package (Tripos Associates, St. Louis, MO). The
Gasteiger–Hückel charges were added to DPP and PYP analogs,
while Gasteiger–Marsili charges for IPA analogs were added. Energy
minimization was used to compute the equilibrium configura-
tion of the molecules, which employs the mathematical procedure
of optimization to move atoms so as to obtain the stable con-
formational state of the molecular systems corresponding to the
global and local minimum on their potential energy surface. In
this work, the molecular mechanics method was applied to per-
form the energy minimization and conformational search, which
were carried out in Sybyl by Tripos force field with the Powell
conjugate gradient minimization algorithm. The energy gradient
convergence criterion was set to 0.05 kcal/mol Å with the dielectric
constant of 1.0 [44]. This molecular modeling process was carried
out in vacuum. The minimized molecules were further employed
to calculate the Dragon descriptors and construct the QSAR
models.

2.2. Conformational sampling and alignment

Identification of the bioactive conformation and the molecular
alignment are two important steps in a QSAR study [45]. Two differ-
ent alignment rules were employed in this study, i.e., ligand-based
alignment and receptor-based alignment. For the ligand-based
alignment, the most active compound in each group was selected as
a template (compounds 27, 122 and 126, respectively), and all the
inhibitors for each group in the data set were then aligned to a com-
mon substructure (shown in Figs. 1–3) using the “align database”
command in Sybyl software to produce the best possible mod-
els. The receptor-based alignment was based on the geometries
obtained from docking.
2.3. QSAR analysis

In order to derive the CoMFA and CoMSIA descriptor fields,
a 3D cubic lattice with a grid spacing of 2 Å and extending
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Fig. 1. Superimposition of DPP compounds in the training and test sets with com-
mon substructure shown in the upper left corner.
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ig. 2. Superimposition of IPA compounds in the training and test sets with common
ubstructure shown in the upper left corner.

Å units beyond the aligned molecules in x, y and z directions

ere created. In CoMFA, steric interactions were calculated using
Lennard–Jones potential, while electrostatic interactions were

alculated using a Coulomb potential. In CoMSIA, five different
imilarity fields: steric (S), electrostatic (E), hydrophobic (H), H-

ig. 3. Superimposition of PYP compounds in the training and test sets with com-
on substructure shown in the upper left corner.
ics and Modelling 30 (2011) 67–81 69

bond donor (D), and H-bond acceptor (A) were calculated. The
Dragon descriptors as independent variables were also employed
to develop quantitative models.

For the CoMFA analysis, S and E fields were scaled by the CoMFA-
STD method with default energy of 30 kcal/mol. CoMFA descriptors
were calculated using a sp3 carbon probe atom with a van der Waals
radius of 1.52 Å and a charge of +1.0.

The CoMSIA models were also derived with the same lattice
box that was used in CoMFA. However, it had several advantages
over CoMFA such as greater robustness regarding both region shifts
and small shifts within the alignments [44]. The CoMSIA descrip-
tors were calculated using a probe atom with radius 1.0 Å, +1.0
charge, +1 hydrophobicity, +1 H-bond donor, and +1 H-bond accep-
tor properties. A Gaussian method was applied to evaluate the
distance between the probe atom and each molecule atom. In gen-
eral, similarity indices, AF,K between the compounds of interest
were computed by placing a probe atom at the intersections of the
lattice points and using Equation (1):

Aq
F,K (j) = −

∑
ωprobe,kωike

−˛r2
iq (1)

where q represents a grid point, i is the summation index over
all atoms of the molecule j under computation, k represents five
physicochemical properties (S, E, H, D and A), ωik is the actual value
of physicochemical property k of atom i, and ωprobe,k is the value of
the probe atom. riq is the mutual distance between the probe atom
at grid point q and atom i of the test molecule. ˛ is the attenua-
tion factor, an optimal value normally between 0.2 and 0.4. Larger
vales result in a steeper Gaussian function, and a strong attenua-
tion of the distance-dependent effects of molecular similarity. In
this work, ˛ was set to 0.3. With this selection, at a given lat-
tice point the property value of an atom of the molecule under
investigation (e.g., the partial atomic charge) is experienced in 1 Å
distance by 74.1%, in 2 Å by 30.1% and in 3 Å by 6.7% of its total value,
respectively.

Partial Least Squares (PLS) method [46] was used to linearly
correlate the CoMFA and CoMSIA fields to biological activity val-
ues. The predictive value of the QSAR models was evaluated first
by leave-one-out (LOO) method in which one compound was
removed from the data set and its activity was then predicted
by the model derived from the rest of the data set. PLS was con-
junct with the cross-validation option to determine the optimum
number of components (Nc) and the cross-validated correlated
correlation coefficient R2

cv. The Nc was then used to derive the
final QSAR model using all of the training set compounds with
non-cross-validation and to obtain the conventional correlation
coefficient (R2

ncv). Additionally, the CoMFA and CoMSIA results
were graphically represented by field contour maps using the
field type ‘StDev*Coeff’. To validate the CoMFA- and CoMSIA-
derived models, the predictive ability for the test set of compounds
(expressed as r2

pred) was determined by using the following
equation:

r2
pred =

(
SD − PRESS

SD

)
(2)

where PRESS represents the sum of the squared deviations between
the predicted and the actual pIC50 values for the test set com-
pounds, SD is the sum of the squared deviations between the
biological activities of the test set molecules and the mean activity
of the training set compounds.

2.4. Molecular docking
To predict the appropriate binding orientation of CDK2
inhibitors, the Surflex module in Sybyl package was employed
to generate an ensemble of docking conformations. Surflex is
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methodology that combines Hammerhead’s empirical scoring
unction [47] with a molecular similarity method (morphologi-
al similarity) [48] to generate putative poses of ligand fragments.
rystal structures of CDK2 (2WPA, 2W17 and 2C68) were retrieved
rom RCSB Protein Data Bank (http://www.rcsb.org). The PDB files
ccasionally have missing residues, for which coordinates were
ot determined. For these three structures, 2WPA misses residues
99–304, which are located at the C-terminal end of the protein
nd do not affect the ligand binding pocket; 2C68 misses residues
8–43 and 297–298, which are distant from the active/binding site
nd are not involved in the ligand–receptor interactions. Therefore,
ll these missing residues are not further rebuilt in this work. As
or 2W17 protein, the missing residues of 13, 39–43 and 151–162
ere reconstructed using the fragment library of the Bioploymer
odule in Sybyl package (Tripos Associates, St. Louis, MO), since

hey participate in establishment of the active center in the loop
rea. All these structures were further optimized by MD approach
n the solvent system to obtain appropriate geometry. The dock-
ng method employed an idealized active site ligand which was
alled a protomol [49] as a target to generate putative poses of
olecules or molecular fragments to guide the molecular docking.
uring the docking procedure, relative ligands were extracted and
olar hydrogen atoms were added to the template protein. Then the
rotomol was produced using ligand-based method: ligand loca-
ion in the same coordinate space in the receptor. The definition of
he protomol is an important step, and the docking performance
epends on (1) the size, location and shape of the area considered
o form the binding site and, (2) how far the site (protomol bloat)
hould extend from a potential ligand, and (3) how deep the atomic
robes that are used to define the protomol can penetrate (proto-
ol threshold) into the protein. Finally, each of the inhibitors was

ocked into the receptor 10 times and various scores were calcu-
ated for each conformation of the inhibitors to evaluate the docking
nalysis, i.e., D score, G score, Chemscore, PMF score and the total
core [50]. The docking poses were saved for each compound, and
ere ranked according to the score function. The highest-ranking
oses (conformations) for each compound, according to the dock-

ng score, were extracted and aligned together for further QSAR
nalysis.

.5. Calculation and selection of Dragon descriptors

Dragon descriptors have been successfully used for quantita-
ively representing the structural and physicochemical features of
molecule in the development of various QSAR models for spe-

ial pharmacological and biological properties [51,52]. In general,
olecular descriptors can be collected from different sources such

s substituent constants, physicochemical properties, quantum
hemical calculations and the theoretical structural parameters
erived from one or two dimensional molecular structures [53].

n this work, Dragon Professional, version 5.0 software [54] was
mployed to calculate the molecular descriptors from the opti-
ized 3D structure of the molecules. It calculates 1644 molecular

escriptors that are divided into 20 groups (shown in Table S4).
o reduce the descriptor space and find more informative and
ppropriate descriptors, a stepwise linear regression method as the
ariable selection in R software: version 2.13.0 (www.r-project.org)
as used [55]. Generally, the purpose of linear regression is to

uantify the relationship between several independent (descrip-
ors) variables and a dependent (bioactivity values) variable. The
onnectivity indices descriptor X5Av was well correlated with
ctivity (R2 = 0.25) in the IPA dataset, whereas for the PYP model,

DF090v, H-046 and Hypertens-50 showed important influences
ith R2 = 0.66. The purpose of employing the Dragon descriptors is

o increase the robustness and generalization of the system. How-
ver, for DPP analogs, the original derived CoMFA or CoMSIA models
ics and Modelling 30 (2011) 67–81

were statistically significant, thus the Dragon descriptors were not
introduced in building models.

2.6. MD simulations

The MD simulations were performed using the GROMACS pack-
age 4.0.7 [56], the force field for the simulations described here
was GROMOS96 [57]. The molecular topology files were generated
by the program PRODRG2.5 [58]. Prior to MD simulation, each of
the complexes was minimized without constraints using the steep-
est descent approach for 5000 steps to remove unfavorable atomic
contacts. All complexes were solvated in cubic periodic box of SPCE
water molecules. The box dimension was 9.06 × 9.06 × 9.06 nm,
8.74 × 8.74 × 8.74 nm and 8.46 × 8.46 × 8.46 nm, respectively for
2WPA, 2W17 and 2C68, and contained 21,593, 19,049 and 16,987
water molecules in each complex, respectively. Additionally, the
minimum distance between the protein and the box walls was
set to more than 8 Å so that the protein does not directly inter-
act with its own periodic image given the cut-off in each complex.
Counter ions (three Cl−, five Cl− and seven Cl− ions, respectively)
were added to neutralize the charge of each system, i.e., 2WPA.pdb
and 2W17.pdb and 2C68.pdb, respectively. At the end, the total
number of the atoms was 67,921 for 2WPA, 60,061 for 2W17
and 53,987 for 2C68 including the protein complexes and waters,
respectively.

During the MD simulation, the temperature was kept con-
stant at 300 K by the Berendsen thermostat [59], the coupling
time was 2 ps while the pressure was maintained at 1 bar using
the Parrinello–Rahman scheme [60], the coupling time was 2 ps.
The electrostatic interactions were calculated using the particle
mesh Ewald method [61]. The LINCS algorithm [62] was used to
constrain bond lengths and the coupling time for MD integration
is 2 ps. The values of the isothermal compressibility were set to
4.5 × 10−5 bar−1 for water simulations; the cut-off distances for
the calculation of Coulomb and van der Waals interactions were
1.0 nm and 1.4 nm, respectively. For the MD simulation, the time
steps were 1 fs during the equilibration and 2 fs during the pro-
duction dynamics. Snapshots were taken from the trajectory every
5 ps and subsequent result analysis was performed. All the sim-
ulations lasted for 5 ns to guarantee the stability of the whole
system.

3. Results and discussion

3.1. QSAR model

In an attempt to build robust QSAR models, various parameters
were considered during the QSAR studies, i.e., the cross-validated
correlation coefficient (R2

cv), non-cross-validated correlation coef-
ficient (R2

ncv), standard error of estimate (SEE) and F-statistic values
(F), etc. S and E fields were generated for CoMFA models, while H, D
and A, three other fields in addition to the S and E were generated
for CoMSIA ones. Since it has been argued that the five different
descriptor fields may not be totally independent of each other and
such dependencies of individual fields usually decrease the statis-
tical significance of the models [63,64], in the present work, all 31
possible combinations of the descriptors for each group were used
to generate various QSAR models, with a full summation as rep-
resented in Tables S5–S10. It is clearly observed that no accurate
models were obtained for IPA and PYP analogs without employ-
ing any Dragon descriptors. It is because the inhibitory activities

of diverse set of compounds cannot be related to the single struc-
tural features of the molecules, and thus a combination of different
structural features should be searched for building desirable mod-
els. Therefore, various 2D- and 3D-molecular descriptors belonging

http://www.rcsb.org/
http://www.r-project.org/
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Table 1
Symbols of the descriptors used in the models and their definitions.

Symbols Descriptor
family

Definition

X5Av Connectivity
indices

Average valence connectivity index chi-5

RDF090v RDF descriptors Weighted by atomic van der Waals
volumes

H-046 Atom-centered
fragments

H attached to CO (sp3) no X attached to
next C
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Hypertens-50 Molecular
properties

Ghose–Viswanadhan–Wendoloski
antihypertensive-like index at 50%

o a wide variety of structural features were considered for the
PA (X5Av) and PYP (RDF090v, H-O46 and Hypertens-50) systems.
he molecular descriptor types and definition of the symbols are
hown in Table 1. Evaluated by statistical properties, the ligand-
ased approach showed superiority to the structure-based one and
he obtained models are summarized in Table 2.

.1.1. DPPs
For this class of inhibitors, the dataset consisting of 54 molecules

s divided into a training set of 42 and a test set of 12 molecules
onsidering the structural diversity and activity range.

The best CoMSIA-HD model gives an R2
cv of 0.73 (>0.5) with

n optimized component of seven, which suggest that this model
hould be considerably reliable to predict the IC50 values. The non-
ross-validated PLS analysis produces an R2

ncv of 0.95, F value of
4.87 and a low SEE of 0.18. Contributions of H and D fields are 70.1%
nd 29.9%, respectively, which indicates that the H field makes more
ontributions to the ligand binding affinity.

The CoMFA model employing the S and E fields with an R2
cv of

.62 for four components is obtained (shown in Table S5), the PLS
nalysis results in an R2

ncv of 0.896, F = 79.36 and a SEE value of

.253. The S field descriptors explain 81.9% of the variance, while
he E field descriptors explain 18.1%.

These models are further validated using an external test set
ompounds. Large R2

pred values, 0.94 and 0.85, are generated for

able 2
he optimal QSAR models for the three types of CDK2 inhibitors.

Parameters DPPs IPAs PYPs

CoMSIA CoMSIA CoMFA

R2
cv 0.727 0.621 0.557

R2
ncv 0.951 0.930 0.689

SEE 0.180 0.182 0.396
F 94.865 62.021 24.398
R2

pred
0.944 0.626 0.575

SEP 0.427 0.422 0.473
Nc 7 10 2

Field contribution
S – 0.411 0.086
E – – 0.007
H 0.701 – –
D 0.299 0.553 –
A – – –
X5Av – 0.036 –
RDF090v – – 0.459
H-046 – – 0.220
Hypertens-50 – – 0.228

2
cv = Cross-validated correlation coefficient using the leave-one-out method;
2
ncv = Non-cross-validated correlation coefficient; SEE = Standard error
f estimate; F = Ratio of R2

ncv explained to unexplained = R2
ncv/(1 − R2

ncv);
2
pred

= Predicted correlation coefficient for the test set of compounds;
EP = Standard error of prediction; Nc = Optimal number of principal compo-
ents; S = Steric, E = Electrostatic, H = Hydrophobic, D = H-bond donor, A = H-bond
cceptor.
ics and Modelling 30 (2011) 67–81 71

CoMSIA and CoMFA models, respectively, suggesting that these
models all have good predictions. The correlation between the pre-
dicted and the actual activities is displayed in Fig. 4A. From this
figure, we can see that all points are uniformly distributed along
the regression line which suggests that no systematic error exists in
the method. Additionally, two compounds 12 and 16 are detected
as outliers, due to their low inhibitory activity and large residual
between the experimental value and the predicted value that is
nearly up to 2.0 log unit.

3.1.2. IPAs
During the modeling process, the data set is divided into a

training set of 58 and a test set of 11 molecules. The statistical
parameters obtained from the optimum CoMSIA-SD analysis are
listed in Table 2. The PLS analysis gives a relatively high R2

cv value of
0.62 at 10 components, suggesting that this model is a useful tool
for predicting IPA inhibitory activities. The conventional regression
coefficient R2

ncv of 0.93 and SEE of 0.182 show its self-consistency.
Statistical parameter for external validation, R2

pred = 0.63, indicates
that the predicted activity coincides with the observed activity
values for the test compounds and this model is reasonable with
good external predictability. The respective contributions of S and
D fields are 41.1% and 55.3%, respectively, indicating that the D
field contributes more to the inhibitory activity. Additionally, one
2D-topological index X5Av [65] also makes 4% contributions to the
model, effectively increasing the fitting degree of the model. In term
of the X5Av, it is the average valence connectivity index of order 5,
which encodes the presence of double and triple bonds as well as
heteroatoms in the molecule such as N and O. In general, the double
and triple bonds coupling with heteroatoms are key for the bind-
ing affinity of IPA analogue. Take compound 122 as an example,
the heteroatom nitrogen atom at rings A and B (shown in Fig. 5B)
serves as H-bond acceptor to interact with the protein, thus enhanc-
ing the inhibitory activity of the molecule. Additionally, molecular
docking reveals that amino acids composed of benzene ring, such
as Phe80 and Phe82, might produce �–� interactions with ring B,
which explains why the presence of this descriptor in the derived
model is so important. The correlation between the predicted and
the actual activities is displayed in Fig. 4B.

3.1.3. PYPs
In terms of PYPs derivatives, a total of 32 molecules are divided

into a training set of 25 molecules and a test set of 7 molecules. The
resulted optimum CoMFA model derived from the pools of differ-
ent types of descriptors is listed in Table 2. The CoMFA model has
an R2

cv value of 0.56 and an R2
ncv of 0.69. The model is developed

with two components. It has an F value of 24.398 and an SEE value
of 0.396, suggesting a good internal predictive ability of the model.
The S and E contributions are found to be 8.6% and 0.7%, respec-
tively, indicating the steric interactions could be important for the
CDK2 antagonistic activity. Three descriptors RDF090v, H-046 and
Hypertens-50 show high contribution rate (22.8%, 22.0% and 45.9%)
to the CoMFA model. For this reason, we believe that these descrip-
tors are useful for increasing the reliability of the model. Generally,
RDF090v is the radial distribution function at 9.0 Å interatomic dis-
tances weighted by atomic van der Waals volumes contributed
positively. The RDF also provides valuable information about bond
distances, ring types, planar and non-planar systems, atom types
and other important structural motifs [66]. The H-046 is a short-
range atom-centered descriptor that describes each atom by its
own atom type and the bond types and atom types of its first

neighbors [56]. A great number of hydrogen atoms present in the
molecular structure attached to carbon sp3 (H-046) may lead to
an increase of the size of the molecule and the increase of the
number of electrostatic interactions in specific reactive sites of the
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ig. 4. Graphs of the predicted versus the experimental pIC50 values of the optimal
odel of PYPs analogs.

nhibitor. Additionally, Hypertens-50 (molecular properties) is the
hose–Viswanadhan–Wendoloski 50%-antihypertensive drug-like

ndex.
Additionally, the CoMSIA-SE model also shows reasonable sta-

istical features of R2
cv 0.556 with two components, R2

ncv 0.682, F
alue 23.56 and SEE value 0.4. Incorporation of other fields (H, D
nd A) also show comparable internal predictivity (shown in Table
9).

To test the predictive ability of the model, a test set of seven
olecules excluded from the model derivation is employed. The

2
pred is 0.58 (in Table 2) and 0.57 (in Table S9) for CoMFA and
oMSIA models, respectively. The graph of the actual versus the
redicted pIC50 values of the training and test sets is illustrated in
ig. 4C, where the plots represent a uniform distribution around
he regression line with respective slope and intercept very close
o one and zero, indicating the satisfactory predictive capability of
he model.

.2. 3D-QSAR contour maps

One of the attractive features of the CoMFA and CoMSIA mod-
ling is the visualization of the information content of the derived
SAR models. Presently, the contour maps were generated to ratio-
alize the regions in 3D space around the molecules where changes

n the fields were predicted to increase or decrease the activity.

.2.1. DPPs
The CoMSIA hydrophobic and hydrogen bond (H-bond) donor

eld contour maps with compound 27 as a reference are shown in
ig. 6. In the hydrophobic contour map, the yellow contours indi-

ate regions where hydrophobic groups would be favorable, while
he white contours represent the regions where the hydrophobic
roups would decrease the inhibitory activity. The H-bond donor
eld is represented by cyan and purple contours, in which the cyan

ig. 5. The most active molecule in each series of CDK2 inhibitors which are used in cont
he class of PYPs derivatives. (C) Compound 126 in the series of IPAs analogs.
s. (A) CoMSIA model of DPPs analogs. (B) CoMSIA model of IPAs analogs. (C) CoMFA

contours indicate areas where H-bond donor substitutions are pre-
ferred and purple regions represent areas where H-bond donor
substitutions are disfavored.

In Fig. 6A, a large yellow contour near the R1 substituent indi-
cates that hydrophobic substituent at this site would be favorable.
It is consistent with the fact that compounds 12, 15 bearing acetyl
groups and compound 14 possessing a hydroxyethyl substituent
have higher potency than compound 13 with a methyl group at
this position. In addition, another yellow contour is found at R2
region demonstrating that a hydrophobic substituent may be favor-
able. This may be the reason why compound 36 with a relative
hydrophobic substituent (fluorophenylamino) shows higher activ-
ity than compound 16 with a fluorophenyl at this position. A white
contour around R3 and R4 areas indicates that a hydrophobic sub-
stituent would be disfavored. The fact is that all of the derivatives
involved in the present study possess hydrophobic substituents at
this site; therefore, it is maybe better for the inhibitory activity
if the hydrophobic substituent is transformed to other hydrophilic
groups. Compound 27 possesses a hydrophobic methyl group at the
end of R1 substituent (white contour), which is unfavorable for the
inhibitory activity. Thereby, we suggest replacing the hydropho-
bic methyl with hydrophilic group which may be beneficial to the
activity.

In Fig. 6B, only a few purple and cyan contours distribute in the
contour map indicate that the H-bond donor field is not very impor-
tant for the inhibitory activity. In fact, the H-bond donor makes
smaller contribution (29.9%) than the hydrophobic one (70.1%) to
the CDK2 inhibitory activity. One cyan contour mapped up the R1
substituent suggests that H-bond donor groups favor the activity.
Compared compound 46 (–NH) with compound 45 (–CH(CH3)2),
it could be easily found that their activity discrepancies could be

explained by this cyan contour. This can also be explained by
compound 47 with –CH3 in this region exhibited lower activity
than compound 49 possessing –NH2 group. A large purple poly-
hedral around Region A (shown in Fig. 5A) implies that H-bond

our analysis. (A) Compound 27 in the group of DPPs analogs. (B) Compound 122 in
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Fig. 6. CoMSIA StDev*Coeff contour plots for DPPs analogs in combination of compound 27. (A) The hydrophobic contour map, where the yellow and white contours represent
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0% and 20% level contributions, respectively. (B) The H-bond donor contour map, wh
For interpretation of the references to color in this figure legend, the reader is refe

onor groups could have a negative effect on the inhibitory activ-
ty. However, all the molecules in this work have –NH groups in
his area suggest that there is room for modification at this posi-
ion considering the effect of H-bond donor groups. In addition,
nother medium sized purple contour is observed around R2 sub-
tituent suggesting that any H-bond donor groups at this position
re unfavorable for the inhibitory activity. This is consistent with
he fact that there are no H-bond donor groups existing among all
he molecules.

.2.2. IPAs
The most potent compound 122 in this series is shown superim-

osed with the CoMSIA contour map in Fig. 7. The steric fields are
epresented by green- and yellow-colored contours (green, bulky

ubstitution favored; yellow, bulky substitution disfavored). The
-bond donor fields are indicated by cyan- and purple-colored
ontours (cyan, H-bond donor favored; purple, disfavored).

ig. 7. CoMSIA StDev*Coeff contour plots for IPAs analogs in combination of com-
ound 122. (A) The steric contour map, where the green and yellow contours
epresent 85% and 15% level contributions, respectively. (B) The H-bond donor
ontour map, where the cyan and purple contours represent 80% and 20% level con-
ributions, respectively. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of the article.)
e cyan and purple contours represent 80% and 20% level contributions, respectively.
the web version of the article.)

The steric favorable green contour at R5 substituent indi-
cates that bulky groups may promote the CDK2 inhibitor
activity. Compounds 74 and 75, where the substituents are
cPrCH2 and cPhetyl, respectively, fit into the green contour and
their activities are thus higher while compound 73 with ethyl
substituent shows less activity. Additionally, the plot shows
that the R1 substituent of molecule 122 places between one
big yellow polyhedron and a small yellow contour. Thus a
bulky substituent occupying this region would depress the bio-
logical activity. Compound 101, with –SO2(CH2)3N(CH2CH2)2O
substituent exhibits lower activity than compound 100, with
–SO2(CH2)3N(Me)2 at this position. This contour also could be
used to explain why those molecules substituted by –SO2NH2
are much less potent than molecules 103, 104, 105 and 106
(R1 = SO2NCH3, SO2NCH2CH2OCH3, SO2NCH2CH2CH2OCH(CH3)2
and SO2NCH2CH2N(CH3)2, respectively).

The H-bond donor field contour map of CoMSIA is shown in
Fig. 7B. The large cyan contour near the –NH of Region A (shown
in Fig. 5B) demonstrates the extreme significance of the H-bond
donor group, and if a H-bond acceptor occupies this contour, the
inhibitory activity would be depressed, as seen in compound 123.
Another cyan contour is located between rings B and C. In fact, all
of the molecules bear –NH groups at this position which are ben-
efit for the activity. In addition, three purple contours around the
–CO group of Region A depict the unfavorable interactions with the
H-bond donor groups. In compound 122, the –CO group serving as
the H-bond acceptor is favorable for the activity and its replace-
ment would lead to lower activity such as compounds 58, 59 and
60 with –NH extended to this contour.

3.2.3. PYPs
Fig. 8 shows the steric and electrostatic maps for the CoMFA

model on compound 126, which is the most active compound in
this series of inhibitors. The steric field contours are shown in
green (more bulk favored) and yellow (less bulk favored), while the
electrostatic field contours are shown in red (electronegative sub-
stituents favored) and blue (electropositive substituents favored),
respectively.

The steric field is shown in Fig. 8A. Two yellow contours far
away from the R1 substituent indicate bulky groups at this posi-
tion would decrease the potency. This may explain why compounds
141, 143–155 with bulkier groups touch this contour showing sig-
nificantly decreased activities. A large region of yellow contour at R3

substituent suggests that bulky groups would decrease the activ-
ity. The activity of compounds 141, 143–154 decreases after the
–Cl is replaced with bulky groups, such as compound 155 (–CF3).
A large green contour is found below the R1 substituent indicat-
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tallographic model. In order to find the correct orientation of the
ligand in the binding site, compound 122 was docked into the
active site of CDK2 receptor 10 times, the highest scored pose (pose
A with docking score of 8.86) is shown in Fig. 10A and C. The
ig. 8. CoMFA StDev*Coeff contour plots for PYPs analogs in combination of compo
nd 20% level contributions, respectively. (B) The electrostatic contour map, where
nterpretation of the references to color in this figure legend, the reader is referred

ng that bulky substituents at this position would be favorable
or the CDK2 inhibitory activity. This is in accordance with all the

olecules employed in the present study bearing large groups
n this area. In addition, another large green contour around R2
ubstituent indicates areas where steric bulk would enhance the
nhibitory activity. This could be explained by the order of the activ-
ty of some compounds, such as the activity of compounds 126–128
isopropyl) > 124–125 (methyl).

In the contour map of the electrostatic field of CoMFA model,
hown in Fig. 8B, a large and three small red contours around R2
nd R3 substituents indicate that electronegative groups in this
egion benefit the potency. This could be explained by the fact
hat the activity of compound 50 (–Cl) is higher than compound
1 (–CH3). On the other hand, all molecules have electropositive
ubstituents at R2 region suggesting that there is room for mod-
fication in this area. The electrostatic contours also show blue
olyhedra outside the R1 substituent where electropositive groups
re expected to increase the activity. Hence, compounds 143–155
aving electronegative groups (–Cl) attached to this contour exhibit
ecreased activity.

.3. Docking analysis and comparison with 3D-contour maps

In the present study, molecular docking was employed to
nderstand the interactions between CDK2 and its inhibitors. The
dvantage of using docking-based alignment is that molecular
ocking explores the binding pocket more extensively. In our work,
ll the molecules in the database were docked into the active site
f CDK2 crystal structures. The docking scores of the most potent
igand 27 for 2WPA, 122 for 2W17, and 126 for 2C68 are 7.02, 5.10
nd 5.00, respectively.

.3.1. DPPs
To elucidate the interaction mechanism, compound 27 is

elected for more detailed analysis. The best possible interacting
odel of compound 27 with CDK2 is depicted in Fig. 9. The anal-

sis shows that Glu81, Phe82, Leu83, Gln85, Ile10, Asp86, Gln131,
sn132, Tyr15, Leu134, Lys33 and Phe80 are the most important
esidues present at the active site. The docked model reveals that
he –NH group between rings A and B (shown in Fig. 5A) acts as
-bond donor to form H-bond with the oxygen atom of carbonyl
f Leu83 (–O···HN, 1.88 Å, 137.9◦) (H-2), so negative charged sub-
tituents in this area are favored for the inhibitor activity. The
itrogen atom of ring B forms H-bond with the –NH of Leu83
–N···HN, 2.23 Å, 175.5◦) (H-3), and the –NH group of ring B forms

-bond with the oxygen atom of Glu81 (–O···HN, 2.34 Å, 153.2◦)

H-4). In addition, the oxygen atom of carbonyl between ring C
nd ring D forms H-bond with backbone of Lys33 (–O···HN, 2.13 Å,
72.6◦) (H-5), and thus the positively charged substituents around
6. (A) The steric contour map, where the green and yellow contours represent 80%
lue and red contours represent 80% and 20% level contributions, respectively. (For
web version of the article.)

the carbonyl oxygen are favored for the activity. Moreover, the oxy-
gen atom at the linker, between rings A and B, forms H-bond with
the hydrogen atom of –NH group of Gln85 (–O···HN, 3.89 Å, 59.7◦)
(H-1), which is consistent with the H-bond donor contour map
(Fig. 6B). The small purple contour around this position suggests
that this is an H-bond acceptor favorable region. The hydrophobic
favorable yellow contour at R2 substituent is enclosed by Leu34
and Ile10, which explains the increased activity after introduc-
tion of hydrophobic groups to this area. As displayed in Fig. 9,
the hydrophobic amino acid residues Gln131, Tyr15 and Asn132
located around R1 substituent form a hydrophobic binding pocket,
which exerts strong hydrophobic interactions with the hydropho-
bic substituents of the Ligand, which correlates well with the
analysis of the hydrophobic contour map (shown in Fig. 6A).

3.3.2. IPAs
Generally, during the docking procedure, two criteria are

applied to select the best-docked poses: (1) ligand binding posi-
tion; (2) scores comparison. The best ligand binding position is
often determined by the RMSD between the docked and the crys-
Fig. 9. Docked conformation derived for compound 27 in complex with the active
site of CDK2 enzyme (2WPA). Compound 27 is displayed in ball and sticks, H-bonds
are shown as dotted green lines, respectively, and the nonpolar hydrogens were
removed for clarity. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of the article.)
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Fig. 10. (A–B) Docked conformation derived for compound 122 in complex with the active site of CDK2 enzyme (2W17) (pose A and pose B). (C–D) The enlargement for the
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igand in the binding site for pose A and pose B, the ligand is displayed in ball and sti
or clarity.

igand core is anchored in the binding site via six H-bonds. The
NH group between rings B and C involves in hydrogen bonding

nteraction with the backbone of Leu83. The –NH group which is
ocated outside ring D acts as an H-bond donor to form two H-
onds with the –COO of Asp86. Ring A forms two H-bonds with
he –NH2 of Lys33. Ring B also forms H-bond with Leu83. Sur-
risingly, the docking results are conflict with the contour maps
hown in Fig. 7. For example, a large green contour map appears
t the R5 substituent, suggesting that in this area the steric inter-
ction may be favorable; however, the docking model shows a
ydrophilic pocket around R5 substituent, suggesting that too large
roups may introduce severe steric clash. A large yellow contour
s mapped at the R1 substituent; conversely, the docking model
eveals that this substituent is almost located outside the bind-
ng pocket. In addition, rings A and B serve as H-bond acceptor
o interact with the protein, which are not in agreement with the
oMSIA contour map (Fig. 7B) without purple contour near these
ositions. Thus the docked complex is submitted to MD simulation
o further study their characteristics and stabilities. After MD simu-
ation, the R5 substituent (hydrophobic) is fitted into a hydrophilic
ocket composed of Gln124, Asn125, Glu12 and Thr13, indicates
hat large ligand with surrounding residues causes the steric hin-
rance, which was unfavorable for the activity. Additionally, the
istance between fluorine and the oxygen atom of Glu74 is 3.14 Å,
hich might result in inappropriate electrostatic repulsion. It is

vident that the long tail of ring D turns ∼90◦ relative to its initial
tructure (shown in Fig. 14A), and large fluctuations reminiscent of
he unstabilization of the ligand, which further indicates that the

ocking protocol may be unreasonable.

According to 3D-contour indication and our chemical intuition,
ose B (docking score of 5.10) was selected for further analysis.
he possible interacting model and the main residues involved
-bonds are shown as dotted black lines, and the nonpolar hydrogens were removed

in the interaction are depicted in Fig. 10B and D. The –NH group
between rings B and C is H-bonded with Asp86 (–O···HN, 3.05 Å,
69.7◦, –O···HN, 3.45 Å, 52.4◦) (H-1). The oxygen atom which is
located outside ring D acts as an acceptor to form H-bond with
the –COO of Asp145 (–O···HN, 2.98 Å, 122.9◦) (H-3), and it is also
involved in hydrogen bonding with the backbone of Lys33 (–O···HN,
2.19 Å, 158.3◦, –O···HN, 3.77 Å, 46.4◦, –O···HN, 3.45 Å, 65.4◦) (H-2).
The docking model exhibits a comparatively large empty cavity
around R5 substituent, indicating that in this area the steric inter-
action may be favorable, which is consistent with the contour map
(shown in Fig. 7A) with a green contour in this region. In addition,
amino acids Leu134, Ala31, Val18 and Ala144 appear around R1
substituent, which is in accordance with the steric contour map.
Due to the H-bond formed by the oxygen atom outside ring D and
the backbone of Lys33 and Asp145, the oxygen atom in the ligand
serves as an H-bond acceptor and amino acids as H-bond donors,
which is evident from the presence of two purple contours nearby.
The –NH group appearing between rings B and C forms H-bond with
Asp86, suggesting the importance of H-bond donor groups at this
position, which is supported by the presence of a favorable cyan
contour near ring D (CoMSIA H-bond donor).

Additionally, the RMS difference between the docked ligand and
the X-ray structure of the ligand which the interaction mode is
similar to compound 122 is 3.47 Å for pose A, 0.29 Å for pose B,
respectively, suggesting the reasonability of pose B and the accu-
racy of the docking procedure.

These analyses suggest that pose B might be the reliable
docking-predicted conformation, regardless of the relatively lower

score. However, for pose B, some H-bond patterns also show non-
typical geometric parameters, that is, the H-bond distance between
Asp86 and ligand is 3.05 Å, but with an angle of only 69.7◦. Thus, in
order to confirm the binding modes of the ligand and to optimize
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Fig. 11. Docked conformation derived for compound 126 in complex with the active
site of CDK2 enzyme (2C68), compound 126 is displayed in ball and sticks, H-bonds
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re shown as dotted green lines, respectively, and the nonpolar hydrogens were
emoved for clarity. (For interpretation of the references to color in this figure legend,
he reader is referred to the web version of the article.)

he structures of the final complex, MD simulation was performed.
The detailed analysis is shown in Section 3.5.2).

.3.3. PYPs
The binding mode of compound 126 is shown in Fig. 11, involv-

ng some key residues such as Lys89, Asp86, Gln131, Asp145, Lys33,
eu83, Ile10, Gly11, Val18, Leu134 and Glu12 in the active site.
t is found that the nitrogen atom of ring B forms three H-bonds

ith backbone of Lys89 (–N···HN, 2.02 Å, 141.3◦; –N···HN, 3.16 Å,
4.6◦; –N···HN, 3.66 Å, 33.5◦) (H-4). Ring B and the backbone –NH

n Gln131 also form an H-bond (–N···HN, 2.66 Å, 140.9◦) (H-3). The
itrogen atom of ring C acts as H-bond acceptor to form two H-
onds with Lys33 (–N···HN, 1.90 Å, 145.5◦; –N···HN, 2.97 Å, 69.7◦)
H-1). In addition, ring C is seen involved in hydrogen bonding inter-
ction with the carboxyl oxygen atom of Asp145 (–O···HN, 3.26 Å,
18.1◦) (H-2).

Our docking model also shows that the R1 substituent extends
utside the cavity, where a steric interaction may be favorable,
hich is validated by a sterically favorable green contour at

his position in the CoMFA model (Fig. 8). Moreover, the elec-
ropositive favorable blue contour near the R1 substituent is
urrounded by some neutral amino acids Gly11, Ile10 and elec-
ronegative amino acids Glu12, Asp86 which can explain the
ncreased inhibitory activity expected from the introduction of
lectropositive groups in this region. At R3 substituent, introduc-
ion of too large groups would potentially lead to steric clash with
esidues Lys33 and Asp145, which is evident from the presence
f a yellow contour at this position. It also shows that the R2
ubstituent is fitted nicely into a large pocket; therefore, bulky
roups are needed, correlating well with the CoMFA model with
green contour at this position. Additionally, an electronegative

avored red contour is surrounded by some amino acids Ala31
not shown in Fig. 11), Asp86 and Leu134, which explains the
ncreased activity after introducing electronegative groups to this
rea.

The results of the docking studies and QSAR can complement
nd validate each other, indicating that the QSAR models developed
re reasonable and can offer constructive suggestions to further
odification of CDK2 inhibitors.
.4. Comparison of binding modes for each class

The docking results of the three different classes of CDK2
nhibitors are compared to explore their similarities and differences
ics and Modelling 30 (2011) 67–81

and to get better understanding of the variations in the biologi-
cal activities. The docking study has revealed that the hydrogen
bonding is an important interaction between the inhibitors and the
receptor.

Interestingly, only one common amino acid residue Lys33 is dis-
covered among these three series of CDK2 inhibitors. Asp145 and
Lys33 residues are found to possess hydrogen bonding interactions
with both the inhibitors (compounds 122 and 126). Therefore, it
can be concluded that Lys33 and Asp145 are vital amino acids for
the ligand–receptor interactions in CDK2 kinase.

On the other hand, the three classes of inhibitors all form more
than five H-bonds with CDK2 kinase, indicating that they all possess
potent inhibitory activities. However, PYPs form seven H-bonds
which are more than DPPs and IPAs (Fig. 12A, B and C), indicating
that PYPs analogs may be more potent than DPPs and IPAs analogs.

3.5. Molecular dynamics simulations

To further explore the conformational alterations that take
place in the ligands and the receptor, MD simulations were per-
formed on three docked complex structures, i.e., 2WPA + ligand 27,
2W17 + ligand 122, 2C68 + ligand 126 for a total of 5 ns.

3.5.1. DPPs
The RMSDs of the trajectory with respect to their initial struc-

ture ranging from 1.5 Å to 2.5 Å are depicted in Fig. 13A (colored
in red). After 2 ns, the RMSD of the complex reaches about 2 Å and
retains this value throughout the simulation. This clearly suggests
a stable conformation after 2 ns of simulation for docked complex
structure. Fig. 13A also shows the RMSD of the ligand in the binding
site versus the simulation time. As expected, the RMSD of the ligand
stabilizes at 0.9 Å, while there is a 0.7 Å increase between 2.4 ns and
2.6 ns and the jump is then stabilized further between 2.6 ns and
2.7 ns. This result reveals that the ligand may switch between two
kinds of conformations in the binding site, and finally maintains the
initial structure. This can explain why the position in the ligand and
the amino acids involved in the hydrogen bonding are conserved.
However, the length and the number of the H-bonds have under-
gone changes. For example, the distance between the –NH group
at Region A (shown in Fig. 5A) and Leu83, the nitrogen atom of ring
B and Leu83, the –NH group of ring B and the backbone of Glu81
is shortened from 1.88 Å to 1.78 Å, 2.23 Å to 1.71 Å and 2.34 Å to
1.81 Å, respectively, after the MD simulation. For Lys33, before the
MD simulation, only one H-bond was formed with the ligand, after
5 ns simulation, the ligand moves much closer to the amino acid
residue Lys33 to form more H-bonds. These results suggest that
the ligand moves deeper into the binding pocket during the MD
simulation, which is consistent with the report which highlighted
that an inhibitor with its ability to enhance the hydrogen bond-
ing capacity to the residues located in the hinge region (residues
81–84) of CDK2 would certainly possess a greater affinity towards
the active site [67].

3.5.2. IPAs
To take into account of the protein flexibility, the behavior of the

docked complex (pose B) is studied in a dynamic context. Fig. 14D
shows the RMSD of Ca backbone with respect to the initial structure
(in red), which clearly shows that the RMSD reaches 2.2 Å, suggest-
ing that a relatively stable conformation of the protein is achieved
through the MD simulation. Fig. 14D also gives the RMSD of the lig-
and (in blue) in the protein binding site, where, interestingly, the
RMSD reaches 2 Å during the first 2 ns, then levels off to 1 Å in the

following 1 ns. It also increases to 2 Å again from 3 ns to 3.5 ns, after
which the RMSD descends back to 1 Å again. This result reveals that
compound 122 may switch between two kinds of conformations in
the binding site of CDK2, which is confirmed by the well superposi-
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Fig. 12. Stereoview of the docked conformations of compounds 27, 122 and 126, respectively, in the active site of CDK2 kinase. The hydrogen bonds are shown by broken
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ion of the coordinates of the protein after MD simulation onto the
nitial conformation (shown in Fig. 14B). Furthermore, the stability
f the hydrogen bonding network predicted by molecular docking
ethod is further examined by analysis of the predicted H-bonds

uring the simulation time. The main findings are summarized
s follows: (1) the main position involving hydrogen bonding in
he ligand is conserved after MD simulation; however, the H-bond

ength and angles have altered. (2) The H-bonds (the –NH between
ing B and ring C···CO of Asp86 at H-3 region, the O outside ring
···NH3 of Lys33 at H-5 area) are preserved after MD simulation.

3) After MD simulation, the ligand–receptor complex has more

ig. 13. (A) The root-mean-square deviation (RMSDs) of docked complex (in red) and liga
n the upper right corner. Plot of superimposed backbone atoms of the lowest energy struc
WPA complex. Compound 27 is represented as line in red for the initial complex and stic
tructures of the binding site with compound 27. H-bonds are shown as dotted black line
s stick and ball model, respectively. (For interpretation of the references to color in this
s A, B and C, respectively. The important amino acid residues, Lys33, Gln85, His84,
e (C, green; N, blue; H, white; O, red).

possibilities for hydrogen bonding, ring A and Lys88 (H-1), ring B
and Gly11 (H-2), the –NH outside ring D and Ala144 (H-4). (4) The
loss of the H-bond between the oxygen atom outside ring D and
the backbone of Asp145 is compensated by the newly formed H-
bond between the –NH outside ring D and Ala144. (5) The H-bond
between the ligand and Asp86 did not show typical parameters for
H-bond angle (69.7◦) during the docking process. However, after

MD simulation, the angle changes to 93.3◦ which coincides with the
typical geometrical parameters. Although the ligand has undergone
several movements to yield different conformations during the MD
simulation, the binding site is always stable, lending credit to the

nd (in blue) versus the MD simulation time in the MD-simulated structures shown
ture of the MD simulation (cyan) and the initial structure (green) for compound 27-
k in cyan for the lowest energy complex, respectively. (B) Plot of the MD-simulated
s; active site amino acid residues are represented as sticks; the inhibitor is shown

figure legend, the reader is referred to the web version of the article.)
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Fig. 14. (A) View of superimposed backbone atoms of the lowest energy structure of the MD simulation (cyan) and the initial structure (green) for compound 122-2W17
complex (pose A). (B) Plot of superimposed backbone atoms of the lowest energy structure of the MD simulation (cyan) and the initial structure (green) for compound
122-2W17 complex (pose B). (C) Plot of the MD-simulated structures of the binding site with compound 122. H-bonds are shown as dotted black lines; active site amino
a el, res
a . (For
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cid residues are represented as sticks; the inhibitor is shown as stick and ball mod
nd ligand (in blue) versus the MD simulation time in the MD-simulated structures
o the web version of the article.)

eliability of the active conformation (pose B) obtained by docking.
he results also indicate that the MD simulation obligates the lig-
nd to optimize its orientation and distance to the binding site for
aximum interaction with receptor.

.5.3. PYPs
The RMSDs from the ligand–protein complex versus simulation

ime is depicted in Fig. 15A (colored in red), which reveals that the
MSD value for the complex has a rising in the first 2.5 ns and then

aintains stable in the rest of the simulation time. Fig. 15A also

hows the evolution of the ligand along the reaction coordinate
colored in blue). For ligand 126, it moves away from the initial
onformation, occurring about 3 Å, which is confirmed by the RMSD

ig. 15. (A) The root-mean-square deviation (RMSDs) of docked complex (in red) and liga
n the lower left corner. Plot of superimposed backbone atoms of the lowest energy stru
26-2C68 complex. Compound 126 is represented as line in red for the initial complex and
f the binding site with compound 126. H-bonds are shown as dotted black lines; active
nd ball model, respectively. (For interpretation of the references to color in this figure le
pectively. (D) The root-mean-square deviation (RMSDs) of docked complex (in red)
interpretation of the references to color in this figure legend, the reader is referred

of the ligand inside the binding pocket. Interestingly, the RMSD of
the ligand reaches about 1.4 Å during the first 1.5 ns, then descends
to 1.2 Å and holds to an altered state till the end of the simula-
tion. This result reveals that the structure of the ligand is stable
after 5 ns simulation. The ligand binding induces perturbations in
the average H-bonding interaction pattern which is found in the
docking model. The analysis of the binding mode of compound 126
after the MD simulation suggests the presence of several H-bonds
between the inhibitor and CDK2 kinase with higher frequencies.

The alteration of this ligand in the binding pocket impedes a con-
formational change and stabilizes the whole complex. At the end of
the MD simulation, the position of the ligand in the binding site is
changed; however, its orientation has been reserved. The MD sim-

nd (in blue) versus the MD simulation time in the MD-simulated structures shown
cture of the MD simulation (cyan) and the initial structure (green) for compound
stick in cyan for the lowest energy complex. (B) Plot of the MD-simulated structures
site amino acid residues are represented as sticks; the inhibitor is shown as stick

gend, the reader is referred to the web version of the article.)
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lation on the complex reveals that, except for Gly11, Glu12, Lys33,
sp86, Lys89, Gln131, Leu134 and Asp145, the rest of residues in

he active site determined by docking have changed and some new
esidues such as Tyr15, Leu133 and Ala144 are located in proxim-
ty of the ligand and could be significant for the interaction. At the
nd of MD simulation, two novel H-bonds are formed between the
ocked compound and amino acids Glu12 and Tyr15, in addition,
he previous H-bond between the ligand and Gln131 has vanished.
he crystal structure has uncovered that Glu12, Tyr15 and Gln131
re equally distributed on both sides of the binding groove; the lig-
nd interacts with residues Glu12 and Tyr15 after MD simulation,
urther inducing the alteration of the ligand binding position to
e much closer to these residues. Additionally, these changes may
e explained by the fluctuation of the T-loop residues (146–166),
hich becomes labile when bound to the ligand rather than in the
nliganded form [67].

Here, the MD simulations present an attractive alternative for
tructural refinement of the final docked complexes. They incorpo-
ate the flexibility of both the ligand and the receptor, improving
nteractions and enhancing complementarities between them. In
ddition, the evolution of the whole system during the simula-
ion provides a dynamic picture of the complex. The stable RMSD
ndicates the reliability of the docking procedure. In a word, the con-
ormations obtained after molecular dynamics are more reasonable
han the docked conformations. The reason is that the docking pro-
edure, on one hand, ignores the flexibility of the protein, which
s not permitted to adjust its conformation upon the ligand bind-
ng, and on the other hand, lacks a unique and widely applicable
coring function necessary to generate a reliable ranking of the
nal complexes. Whereas, the MD simulation treats both the ligand
nd the protein in a flexible way, allowing for an induced fit of the
eceptor-binding site around the ligand [68].

. Conclusions

In this study, the ligand- and receptor-based QSAR, molecular
ocking and molecular dynamics methods, for the first time, are
mployed to explore the structure–activity relationship of three
ifferent series of CDK2 inhibitors. The QSAR models exhibit good
2
cv values, suggesting their good predictive ability. The characteris-
ics of the 3D-contour plots produced by the models provide useful
nformation about the intermolecular interactions of the inhibitors

ith the surrounding environment. The docking results propose a
eneral binding mode of these ligands to the receptor and deter-
ine the key residues in the binding pocket of the CDK2 enzyme. To

alidate the binding mode and elucidate the effects of ligand bind-
ng on the receptor, MD simulation is performed. The main findings
re summarized as follows:

1) For DPPs, the CoMSIA model yields relatively better prediction
than the CoMFA one. The contour map reveals that hydrophobic
and H-bond donor groups at R1 region, hydrophobic and H-
bond acceptor substituents at R2 region and hydrophilic groups
at R3 and R4 areas would be beneficial to the activity. The
majority of interactions have been observed from the docking
structure which is conserved throughout the MD simulation.
Meanwhile, the simulation also shows minor changes, such as
the length and number of H-bonds after MD simulation, and
the findings also reveal that the ligand moves deeper into the
binding pocket which is correctly elicited by the MD simulation.

2) For IPAs, the optimal CoMSIA model shows that bulky groups

at R5 substituent, small groups at R1 substituent, H-bond donor
groups in Region A all exhibit positive effect on the activity.
Results indicate that Pose B is the correct conformation in the
active site of CDK2, which is evidenced by the contour map and

[
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MD simulation. It has also been observed that, the inhibitors
form H-bonds with amino acid residues (Asp86, Lys33, Lys88,
Gly11, Ala144 and Asp145) to bind properly with the enzyme.

(3) For PYPs, the contour map shows that small and electroposi-
tive substituents at R1 region, small and electronegative groups
at R3 substituent, bulky and electronegative groups at R2 area
have great impact on the overall inhibitory activities. The MD
simulation suggests that other than Gly11, Glu12, Lys33, Asp86,
Asp89, Gln131, Leu134 and Asp145, the rest of the residues in
the active site determined by docking have changed and some
novel residues such as Tyr15, Leu133, and Ala144 are involved
in the ligand–receptor interactions. And the increased hydro-
gen bonding with active site residues results in more stable
complexes during the MD simulation.

The present study provides the first example of identifying the
correct binding mode of CDK2 inhibitors using the QSAR, molecular
docking, and molecular dynamics approaches. The results indicate
that the derived models are reliable and robust, which might be
useful in predicting the activity of new CDK2 inhibitors and offer
guidelines for further corresponding ligand design.
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